Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework

نویسندگان

  • Yuankai Wu
  • Huachun Tan
چکیده

Deep learning approaches have reached a celebrity status in artificial intelligence field, its success have mostly relied on Convolutional Networks (CNN) and Recurrent Networks. By exploiting fundamental spatial properties of images and videos, the CNN always achieves dominant performance on visual tasks. And the Recurrent Networks (RNN) especially long short-term memory methods (LSTM) can successfully characterize the temporal correlation, thus exhibits superior capability for time series tasks. Traffic flow data have plentiful characteristics on both time and space domain. However, applications of CNN and LSTM approaches on traffic flow are limited. In this paper, we propose a novel deep architecture combined CNN and LSTM to forecast future traffic flow (CLTFP). An 1-dimension CNN is exploited to capture spatial features of traffic flow, and two LSTMs are utilized to mine the short-term variability and periodicities of traffic flow. Given those meaningful features, the feature-level fusion is performed to achieve short-term traffic flow forecasting. The proposed CLTFP is compared with other popular forecasting methods on an open datasets. Experimental results indicate that the CLTFP has considerable advantages in traffic flow forecasting. in additional, the proposed CLTFP is analyzed from the view of Granger Causality, and several interesting properties of traffic flow and CLTFP are discovered and discussed . Traffic flow forecasting, Convolutional neural network, Long short-term memory, Feature-level fusion

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Method for Traffic Flow Forecasting Using Multimodal Deep Learning

Traffic flow forecasting has been regarded as a key problem of intelligent transport systems. In this work, we propose a hybrid multimodal deep learning method for short-term traffic flow forecasting, which jointly learns the spatial-temporal correlation features and interdependence of multi-modality traffic data by multimodal deep learning architecture. According to the highly nonlinear charac...

متن کامل

Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic Forecasting

Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges,...

متن کامل

High-Order Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting

Traffic forecasting is a challenging task, due to the complicated spatial dependencies on roadway networks and the time-varying traffic patterns. To address this challenge, we learn the traffic network as a graph and propose a novel deep learning framework, High-Order Graph Convolutional Long Short-Term Memory Neural Network (HGC-LSTM), to learn the interactions between links in the traffic net...

متن کامل

Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting

The goal of traffic forecasting is to predict the future vital indicators (such as speed, volume and density) of the local traffic network in reasonable response time. Due to the dynamics and complexity of traffic network flow, typical simulation experiments and classic statistical methods cannot satisfy the requirements of mid-and-long term forecasting. In this work, we propose a novel deep le...

متن کامل

Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction

Short-term traffic forecasting based on deep learning methods, especially long short-term memory (LSTM) neural networks, has received much attention in recent years. However, the potential of deep learning methods in traffic forecasting has not yet fully been exploited in terms of the depth of the model architecture, the spatial scale of the prediction area, and the predictive power of spatial-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.01022  شماره 

صفحات  -

تاریخ انتشار 2016